Studies on Flavin derivatives. The Crystal and Molecular Structure of 4a-Allyl-3,5,7,8,10-pentamethyl-4a,5-dihydroisoalloxazine

BY ROLF NORRESTAM

Institute of Inorganic and Physical Chemistry, University of Stockholm, S-104 05 Stockholm, Sweden

(Received 29 December 1971)

The crystal structure of 4a-allyl-3,5,7,8,10-pentamethyl-4a,5-dihydroisoalloxazine, $C_{18}H_{22}N_4O_2$, has been derived from three-dimensional X-ray diffractometer data. The unit cell is orthorhombic, space group $P_{2_12_12_1}$, Z=4, with the dimensions $a=17\cdot422$, $b=12\cdot777$ and $c=7\cdot564$ Å. The structure was determined by direct methods (variance-weighted \sum_2 formula). Full-matrix least-squares refinement of the structural parameters gave an unweighted linear R value of 0.035 for 1608 observed reflexions. The 4a-a!lyl-substitution gives bond angles around the carbon atom C(4a) of about 109.5°. The presence of this tetrahedral carbon atom causes a slight twist of the molecules along the alloxazine ring system. The intermolecular contacts suggest that the crystal structure is largely held together by conventional van der Waals forces.

Introduction

The flavoenzymes, which have an isoalloxazine moiety as a part of the prosthetic group, form a class of redoxactive enzymes playing an important role in biological redox processes (see *e.g.* Ehrenberg & Hemmerich, 1968). The isoalloxazine group occurs in three different states of oxidation – the oxidized, the radical (monohydroisoalloxazine) and the fully reduced (dihydroisoalloxazine) states. The present structure determination of 4a-allyl-3,5,7,8,10-pentamethyl-4a,5-dihydroisoalloxazine (Fig. 1) is part of a series of structural investigations of flavin derivatives (*cf.* Kierkegaard *et al.*, 1971) undertaken at this Institute.

In previous papers we have shown that the isoalloxazine ring of neutral (non-protonated) derivatives is bent in fully reduced 1,5-dihydroisoalloxazines (see *e.g.* Norrestam, von Glehn, Hagman & Kierkegaard, 1969) and planar in oxidized isoalloxazines (Norrestam & Stensland, 1972). The present investigation will provide structural information about another group of fully reduced derivatives, the 4a,5-dihydroisoalloxazines.

A number of biochemical studies support the fact that irreversible flavin reduction, giving 4a,5-dihydrocompounds, does occur (see *e.g.* Gavron, 1963). The possible role of 4a-substituted flavins as intermediates in group transfer processes during the catalysis of flavin enzymes has been extensively studied (*cf.* Walker, Hemmerich & Massey, 1967 and Hemmerich, Ghisla, Hartman & Müller, 1971).

Experimental

A crystalline specimen of 4a-allyl-3,5,7,8,10-pentamethyl-4a,5-dihydroisoalloxazine was kindly supplied by Dr S. Ghisla (University of Konstanz, Germany). The preparation of some other 4a,5-dihydroalloxazines is described by Jefcoate, Ghisla & Hemmerich (1971). The crystals were examined by X-ray photographic methods (Guinier, oscillation and Weissenberg techniques). The X-ray photographs indicated orthorhombic symmetry and the systematic extinctions among the reflexions were consistent with space group $P2_12_12_1$. The crystal finally selected had the dimensions $0.20 \times 0.30 \times 0.22$ mm, with the prismatic axis along [010], and was mounted on a goniometer along this axis. Precise unit cell parameters were obtained by leastsquares refinement of manual single-crystal diffractometer measurements with Cu K α radiation ($\lambda = 1.54184$ Å).

Crystal data

Composition of asymmetric unit $C_{18}H_{22}N_4O_2$, (calculated molecular weight=326·4); $a=17\cdot422$ (5), $b=12\cdot777$ (3), $c=7\cdot564$ (5) Å, $V_o=1683\cdot8$ Å³, $D_c=1\cdot29$ g.cm⁻³, Z=4, μ (Cu $K\alpha$)=7·1 cm⁻¹, space group= $P2_12_12_1$.

Three-dimensional X-ray intensity data were collected on a Siemens AED single-crystal diffractometer with graphite-monochromatized Cu K radiation, using a scintillation detector with pulse height discrimination. The 1789 independent reflexions within $\theta \le 68^{\circ}$ were measured with the θ -2 θ scan technique (scan interval 1.6°) and the background intensity for each reflexion was calculated as the average of the intensities measured at each of the ends of the scan interval. To facilitate a judgement of the random counting errors of the data, a plot of the percentage of the collected data with $\sigma(I_{net})/I_{net} \le \sigma_{rel}$ versus σ_{rel} was performed and is shown in Fig. 2. The calculation of the e.s.d.'s of the net intensities, $\sigma(I_{net})$, was based on conventional counter statistics. Only the 1613 independent reflexions (90%) for which $\sigma(I_{net})/I_{net} \le 0.10$ were used in the subsequent calculations. The net intensities were corrected for Lorentz, polarization and absorption effects (the transmission factors varied between 0.84 and 0.88.)

Structure determination and refinement

The crystal structure was solved by application of direct methods (see *e.g.* Karle & Karle, 1966) in which variance-weighted \sum_2 relations were used for estimation and refinement of phases. A detailed description of the phasing programs is given elsewhere (Norrestam, 1972).

Approximate overall temperature and scale factors were obtained from a usual Wilson plot using a local version of the program FAME (Dewar & Stone). The statistical averages and distribution of the derived normalized structure factors |E| are given in Table 1. From the 205 highest |E|'s (|E| greater than 1.5), the 914 best triple-phase relations having $|E(\mathbf{h})E(-\mathbf{k})E(\mathbf{k}-\mathbf{h})|$ greater than 12.0 (the variances of the relations used will then be below 0.6 rad², according to the table given by Germain, Main & Woolfson, 1970). Of the 205 reflexions used for generating triple relations, thirteen (|E|'s below 1.8) did not enter into any relations.

Table 1. Statistical data for the normalized structure factors

	Experi- mental	Theoretical centrosymmetric	Theoretical non-centrosymmetric
EI	0.80	0.798	0.886
$\langle E ^2 - 1 \rangle$	1.000	1.000	1.000
(IEI2)	0.94	0.968	0.736
E > 1	29 ·0 %	32.0 %	37.0%
E > 2	3.9	5.0	1.8
E > 3	1.0	0.30	0.01

Several \sum_{1} relations indicated that the phases of the reflexions 022 and 14,0,0 were both 0.0 radians (estimated probabilities above 0.9). Analysis of the 914 triple relations showed that the reflexions 783 and 892 entered into several relations involving two reflexions whose phase sums were known from symmetry imposed phase restrictions to be $\pi/2$, modulus π . By assigning the value $\pi/2$ to these two reflexions, and the value $\pi/4$ to the reflexion 6,11,1, a proper set of origin and enantiomorph-defining reflexions was obtained.

To obtain phases of most of the 192 reflexions involved in the triple relations, two unknowns, 043 and 012, were included in the basis set. These two reflexions have restricted phases, so that four alternative possible solutions existed. The basis set used and the phases obtained by the phasing program, together with the phases calculated after completion of the structure determination, are given in Table 2.

For each of the four solutions, four different figures of merit were calculated, *viz*. the number of phases determined with e.s.d.'s below $\pi/4$, the number of triple relations having phase-sums between $-\pi/4$ and $\pi/4$, the r.m.s. deviation of the triple-phase sums from

Table 2. Basis set used for solving the phase relations

Iı	ndic	es	E value	Initial phase value	Refined phase value	Calculated phase value
7	8	3	3.86	$\pi/2$	1.64	1.76
6	11	1	3.39	$\pi/4$	1.26	0.44
8	9	2	3.29	$\pi/2$	1.99	2.17
0	4	3	4-39	π	π	π
0	1	2	3.04	$\pi/2$	$\pi/2$	$\pi/2$
0	2	2	3.19	0	0	0
14	0	0	2.59	0	0	0

zero and the sum $\sum |E_i| \cos \varphi_i$ (where φ_i is the phase for reflexion number *i*). The solution giving the most promising figures of merit was used to calculate an *E* map.

The fifteen highest peaks in this map made chemical sense and their positions together with isotropic temperature factors (initialized $3 \cdot 0 \text{ Å}^2$) and one overall scale-factor were refined by four cycles of full-matrix least-squares treatment, to yield an unweighted R value $(R = \sum |k|F_o| - |F_c||/\sum k|F_o|)$ of 0.41 for all 1613 reflexions. At this stage all the atoms were treated as carbons. From a subsequent difference electron density map, three more atoms were located. From knowledge of

Fig. 1. Schematic drawing of 4a-allyl-3,5,7,8,10-pentamethyl-4a,5-dihydroisoalloxazine, with atoms within the rings numbered for reference in the text.

Fig. 2. Percentage of the collected data with $\sigma(I_{\text{net}})/I_{\text{net}} \le \sigma_{\text{rel}}$ plotted versus σ_{rel} .

the schematic structural formula (cf. Fig. 1), it was possible to identify the 18 atoms and thus assign proper scattering factors to them in the calculation of difference electron densities, from which the remaining 6 non-hydrogen atoms were located. Four cycles of leastsquares refinement of the 24 non-hydrogens with anisotropic temperature factors reduced the R value to 0.072. Reasonable positions for the 22 hydrogens were easily found from a subsequent difference electron density map. Refinement of the obtained structure model with anisotropic temperature factors for the non-hydrogen and isotropic ones for the hydrogen atoms gave a final R value of 0.041, for all 1613 reflexions. The finally obtained structure factors $k|F_{o}|$ and $|F_{c}|$ are listed in Table 3. Inspection of this list shows that at least the five strongest reflexions, all having fairly low $\sin \theta$ values, appear to suffer from extinction since their $|F_{c}|$ values are much smaller than their $|F_{c}|$ values. Upon omission of these five reflexions, the Rvalue for the remaining 1608 reflexions becomes 0.035.

In all the refinements Hughes's (1941) weighting scheme with $|F_o|_{\min} = 1.5$ was used. The scattering factors used for carbon, nitrogen and oxygen were those given by Hanson, Herman, Lea & Skillman (1964), for

Table 3. Structure factors

Each group of three columns contains k, 10 $|F_o|$ and 10 $|F_c|$, and is headed by the values of h and l common to the group.

במוויאיון ון שוביל איירון מאייווס מוויינים מוויאינים בביאיינים הביאיינים הביבו איירו מיבואיייניו זמאיין זמאיין ממללטימי ג' משמיי מאברטי מדבינונים בנמצטים מנמציים מינציים איינועים גיאהואיי אימוניוועומי מוויינים ביאודיים איי מווינוטים ע שובי מרכנני מיהיננטיה העונטיעי, מטמיעמילה, ווהסימטולה. ווסימוטיטיטיאינוני בישוביט איינים בישובי	al wai watu i aatuu i aatuu i Taatuu i Taatuu uu i Taatuu i Taataa atuu i Taataa atuu i Taataa aatuu i J 15 aa uutaat asidaatu taasaankaa turitatka, uutaka kalaataa uudista Kalaa turista kala uutaataalisti 16 aas uutaata aasidaatu taasaadkaa uutaatadu, uutaata kalaata kalaa	i ol sovuel suvuuel Tasaanuuel Tasaanuuel Tasaanuuel Tasaanuuel Tasaanuuuel Jaraasanuuel Jaraasaa 5 si 11991 (1911) 6 sis siyyasa tayanai tayanaise artaespale, 11937/1914, saitaisessi mariitäänään ja mariitäänä	raansi ol saami aasaansi Täeaaraadi Taaaaaraansi Taasaa araansi Taasaa araansi Taasaanaan ila taasaa Taasaa 1996 ta saana tasaatiya aaassiyaa araastaada asaartisiitta, aasaa kirita, aacaa aa a 1986 ta saasa tasaada saassiisaa maastaataa aa aa adalaa aa	arroomi eeeni eeeni Zeeroomusi Zeeroomusi UZeroomusi IZEroomoonus IzEEroomoonus IzEEroomoonus IzEEro 1850:3845 aaar onaar arradoust eaustellit, tardidrasti, useroomoonus istaatii arrasiantiit, maaratiitta, areek 1851:3846 eeero zeeroomoonus maarateles, tardistassi veeroomoonis, aastaniitertiita arrastiittaa areekseeroomoo	تتافع معامسها معامسها معصمهما تعصمهمات توعمهامات تتتقم مااسها تتتقم معامسها تتتقدم ماراسها تتتقدمانات ت مثقلها فقلائت شعدهما معددها ويعصفون يالاتقادة المتناطرات التقالا لا محمدته ومقالا التقارية التقارية كالكار تتتابع فقلائت شعدهما مدددها متعددات ماتناق بالتقالات ماتنا التالي متالية التقالي التقاليات التقاريات التقالي	l Arressourul vaaasi aaruusi Eessaaruu III ei aasuumei Irressouruusi Irressaaruunei Arressaaruuusi Arressaaruu 1888549844 seesee kusese aaressi 20 2 arvineessi 20 2 arvineessi 259000000000000000000000000000000000000	umed Türkennumed numek manumi tananumed fransvuured Türkenuvured Türkenuvured Türkenuvured Türkenuvured 1995: dechestelles, sandi uudeda, uudeda, saadistaa, saaridantes, nutiik kainetti uutiitenuviite 1985: reseredatis, sauda saudat, saatistaa, saatistikusi, saaridante, saakukainis, uutiiteisioini, andistytiite
1 1 1 1		1 22 21 2 22 20 2 21 20	5 120 130 7 120 130		13 155 156	" Jest 192	

ine Training and a second and a second for example Trainers and under second for an example for an example for 12.1 second 1971, use , and a second a second a second a second of the second and a second a second a second a 13.1 contest 1971, second a second a second for second 1971, second 1971, second and a second a second a second 13.1 contest 1971, and a second a second Trainers a second 1971, second 1971, and 1971, second 1971, a second 1 13.1 contest 1971, and 1971, and 1971, a second Trainers a second 1971, and 1971, a second	serezierizi, morazzie, srea, sesea, sesea, sesererio, destabric, procezeleriz, escienteris, persieras uzarovenei Tisaroveni III anaroveni romenei eroveni Ezereziezi procezeleri escienteris, persieras vesezierizi, moraspir escietaren treconi arresea escienti Eserezieri escientei arreseite romezerieti, provezieti, arreseteri arresea, eroseane eroseati, arresetti escientii e	Zeesseed IIseeseed IIseesseed IIIseesseed IIseesseed was esseed as esseed IIsees IIsees IIsees IIsees warkie: wastein, audiseeki, waaroiseen, warkei, eks, wastei waraise' warkiek waroises, warkiek, aiseesykii, woosejirii, steiderik eks, wark warkiek uite iiseesiik		al Francusal Erranoural Transmul ormal errounal errourul Francourul Terranourul Terranourul Terranourul aronou 2 ¹ sectionsy euclisator excepting error preseater errorecen errorecen errorecenter errorecent errorecent 2. sectionstication errorecenter errorecenter errorecen errorecen errorecent errorecent errorecent errorecent	ಎಲುಬುದೇ ಕಾಲುಟಿ ಬುಬುದೇ ಎಲುಬುದಾಗೆ ಎಂಬುಬುದಾಗೆ ನಾಲುಬುದಾಗಿ ನಾಲುಬುದರೆ ಬುದರಿ ಕಾಲುಬುದೇ ಎಲುಬುದ್ ಎಲುಬುದ್ ನ ಮಾತ್ರಕರ್ಷ್ ಸುತ್ತು ಗಣಗಾತ್ರೆ ರಾರ್ಡಿಬಳ್ಳಿ ಸಾತ್ರವಾದ್ಯಾಗೆ ಅನುವಾಜನಾಗಿ ತನ್ನಲುಬಿಸುವು ತಂಬುಬಿಸುವು ಮಾತ್ರಕ್ಕೆ ಕಾರ್ನಪ್ರ ಬಂತುಕರ್ತ್ ತಂಬರು ನಾಲಾಡು ಕಾಗಾಡ್ಯವಾಗಿ ಬುನವರ್ಶಿ ಬುನವರ್ಶದ ಗ್ರಾಮಕರ್ಶಿ ನಾಲಾಗುವರು ನಾಡುವರು ತಾತ್ರಾ ಮಾತ್ರಿಸಿ ಸ್ಥಾನವರ್ತಿ ಕಾರ್ನಕರ್ತಿ	منداً منا منا مستقل ماستاً ماستاً ماستاً ماستاً ماستاً ماستقل حاصتاً حاصتاً ماميتها من حاصتها حجاماتها - تقال في عني المعني المالية في المعني المعني المعني المنتقل المعنياتي المنتقل المعني المنتقل المعني المنتقل - مالية المالية المالية المنتقل المنتقل المعني المنتقل المنتقل المعنياتي من المنتقل المن المعنيات المنتقل الم
---	---	--	--	---	---	---

Table 3 (cont.)

hydrogen, that given by Stewart, Davidson & Simpson (1965). In the last cycle of least-squares refinement, the shifts of the parameters were below 20% of the e.s.d.'s for the non-hydrogen parameters, and below the e.s.d.'s for the hydrogen parameters. The least-squares refinement was carried out using a local ver-

Table 4. Fractional atomic coordinates for the non-hydrogen atoms

The estimated	standard	deviations	are	given	in	parentheses.
N(1)	0.6415	(1) 0	.4929	9(1)		0.9258 (3)
C(2)	0.7112	(1) 0	4538	3 (2)		0.8721 (3)
N(3)	0.7145	(1) 0	.3612	2(1)		0.7709 (2)
C(4)	0.6517	(1) 0	.3124	4 (1)		0.7008 (3)
C(4a)	0.5739	(1) 0	.3646	5 (1)		0.7297 (3)
N(5)	0.5169	(1) 0	·2848	3 (1)		0.7754 (2)
C(5a)	0.4446	(1) 0	•331	1 (1)		0.8138 (2)
C(6)	0.3767	(1) 0	·277() (1)		0.7837 (3)
C(7)	0.3052	(1) 0	.3199	9 (2)		0.8204 (2)
C(8)	0.3014	(1) 0	+4238	3 (2)		0.8833 (3)
C(9)	0.3693	(1) 0	•477(5 (1)		0.9139 (3)
C(9a)	0.4405	(1) 0	•432	l (1)		0.8849 (2)
N(10)	0.5103	(1) 0	•483:	3 (1)		0.9311 (2)
C(10a)	0 ∙5784	(1) 0	•449:	3 (1)		0.8695 (3)
O(12)	0.7711	(1) 0	•494′	7 (2)		0.9169 (3)
C(13)	0.7906	(1) 0	•317:	3 (2)		0.7330 (4)
O(14)	0.6569	(1) 0	·2320	5 (1)		0.6142 (2)
C(14a)	0.5521	(1) 0	·4220	0 (1)		0.5530 (3)
C(15)	0.5407	(1) 0	·208	6 (2)		0.9100 (3)
C(17)	0.2333	(1) 0	·256	7 (2)		0.7885 (4)
C(18)	0.2257	(1) 0	•476	9 (2)		0.9177 (5)
C(20)	0.5075	(1) 0	·572	3 (2)		1.0533 (4)
C(24a)	0.5309	(1) 0)•351(0 (2)		0.4040 (3)
C(34a)	0.4622	(1) 0	•344	7 (2)		0.3359 (3)

sion of the program *LALS* (Gantzel, Sparks & Trueblood).

1716

The molecular conformation, together with the atomic labels used, is shown in Fig. 3. In Tables 4, 5 and 6, the positional and thermal parameters are given with their e.s.d.'s. Tables 7 and 8 show the intramolecular bond distances and angles uncorrected for thermal vibration.

After the completion of the structure determination, the phases obtained from the phasing program were compared with the phases calculated in the last leastsquares cycle. The average deviation of all the 145 phases determined with e.s.d.'s below 45° was 14°. The average deviation of the phases for the 88 reflexions having phase values not restricted by space group symmetry, was 23°. This last deviation, 23°, is somewhat higher than those usually obtained (about 15–20°) for structures of similar complexity treated by the variance-weighted \sum_{2} formula. A possible explanation (Hauptman, 1964) is the large overlap in Patterson space for crystal structures built up of roughly planar molecules consisting of hexagons and having fairly parallel molecular planes. However, the E map did not show any of the confusing spurious peaks to be expected, according to Bürgi & Dunitz (1971), for such structures.

A comparison between the phases obtained by the so called weighted \sum_2 formula (Karle & Karle, 1966), and by the variance-weighted \sum_2 formula used in the present study, showed that the average deviation of the phases not restricted by symmetry became 31 and 23° respectively. Thus, the more proper weighting used in

the latter case produces significantly improved phaseestimates.

Discussion

The crystal structure projected on (001) and (010) is shown in Fig. 4. The fairly planar molecules are oriented in such a way that their molecular planes are almost parallel and perpendicular to the **c** direction. Lack of proper hydrogen donors precludes conventional hydrogen-bond formation in the crystal struc-

Table 6. Hydrogen fractional atomic coordinates and isotropic temperature factors

The estimated standard deviations are given in parentheses

H(6)	0.380 (1)	0.210(2)	0.736(3)	3·2 (4) Å ²
H(9)	0·366 (1)	0·552 (2)	0.956(3)	3.3(4)
H(13a)	0.817 (3)	0.358 (4)	0.679(10)	12.9(18)
H(13b)	0.795 (3)	0.284(5)	0.652(9)	12.1(20)
H(13c)	0.804(4)	0.244(5)	0.818(9)	13.5(17)
H(14a)	0.508(1)	0.468(2)	0.577(3)	2.7(4)
H(14b)	0 ·598 (1)	0.464(2)	0.520(3)	3.9 (5)
H(15a)	0.560(2)	0.247(3)	1.022(5)	5.8(7)
H(15b)	0.576(2)	0.161(2)	0.867 (4)	4.8 (6)
H(15c)	0.494(2)	0.160(2)	0.939 (4)	5·4 (7)
H(17a)	0.202(2)	0.256(2)	0·884 (5)	5·1 (7)
H(17b)	0.244(2)	0.181(3)	0.758 (5)	6.8 (8)
H(17c)	0.202(2)	0.292(3)	0.701 (6)	7.7 (10)
H(18a)	0.234(2)	0.553(3)	0.951 (6)	8·8 (10)́
H(18b)	0.192 (2)	0.472(3)	0.830(5)	6·2 (8)
H(18c)	0.200 (2)	0.446(3)	1.013 (6)	7·2 (9)
H(20a)	0.556 (2)	0.570 (3)	1.114 (5)	6.5 (8)
H(20b)	0.490 (2)	0.635 (4)	0.985 (7)	8·7 (10)
H(20c)	0.472 (2)	0.563 (3)	1.153 (6)	7.8 (9)
H(24)	0.565 (2)	0.304 (3)	0.357 (6)	8.6 (10)
H(34a)	0.425 (2)	0.392 (3)	0.380 (5)	6.8 (8)
H(34b)	0.445 (2)	0.300 (3)	0.235 (5)	6.4 (8)

Table 5. Anisotropic thermal parameters for the nonhydrogen atoms

The estimated standard deviations are given in parentheses. The temperature factor expression used is

 $\exp[-(h^2b_{11}+k^2b_{22}+l^2b_{33}+hkb_{12}+hlb_{13}+klb_{23})]$

	$b_{11} imes 10^4$	$b_{22} \times 10^{4}$	$b_{33} \times 10^{4}$	$b_{12} \times 10^{4}$	$b_{13} \times 10^{4}$	$b_{23} \times 10^{4}$
N(1)	23 (1)	50 (1)	214 (4)	-14(1)	-9(2)	-43(3)
C(2)	23 (1)	57 (1)	196 (4)	-12(1)	-8(3)	-5(4)
N(3)	18 (1)	52 (1)	181 (3)	-2(1)	4 (2)	18 (3)
C(4)	21 (1)	38 (1)	157 (3)	-4(1)	13 (2)	20 (3)
C(4a)	19 (1)	34 (1)	137 (3)	-5(1)	2 (2)	4 (3)
N(5)	20 (1)	32 (1)	142 (3)	-6(1)	3 (2)	3 (2)
C(5a)	20 (1)	35 (1)	116 (3)	-2(1)	5 (2)	2 (3)
C(6)	24 (1)	41 (1)	138 (3)	-11(1)	3 (2)	-3(3)
C(7)	21 (1)	57 (1)	127 (3)	-9(1)	1 (2)	8 (3)
C(8)	22 (1)	61 (1)	144 (3)	7 (1)	7 (3)	10 (d)
C(9)	24 (1)	42 (1)	162 (3)	7 (1)	9 (2)	-10(3)
C(9a)	21 (1)	37 (1)	127 (3)	-4(1)	6 (2)	-2(3)
N(10)	22 (1)	36 (1)	171 (3)	-3(1)	1 (2)	-35(3)
C(10a)	21 (1)	33 (1)	157 (3)	-7(1)	-2(2)	0 (3)
O(12)	23 (1)	95 (1)	341 (5)	-33(1)	-20(3)	-84(5)
C(13)	20 (1)	75 (2)	253 (5)	7 (2)	18 (3)	12 (6)
O(14)	26 (1)	50 (1)	237 (3)	6 (1)	22 (2)	-53(3)
C(14a)	24 (1)	40 (1)	156 (4)	-5(1)	12 (2)	26 (3)
C(15)	26 (1)	47 (1)	201 (4)	10 (1)	11 (3)	56 (4)
C(17)	23 (1)	84 (2)	208 (5)	-18(2)	4 (3)	-9 (5)
C(18)	24 (1)	87 (2)	264 (6)	16 (2)	12 (4)	-46 (6)
C(20)	32 (1)	48 (2)	215 (5)	-9(2)	9 (3)	-75(4)
C(24a)	32 (1)	57 (1)	146 (4)	12 (1)	11 (2)	6 (4)
C(34a)	38 (1)	74 (2)	179 (4)	- 12 (2)	-20(3)	12 (5)

ture. Most of the intermolecular distances (Table 9) are of the same order as van der Waals distances. The largest deviations from van der Waals contact distances occur between the keto oxygen atoms, O(12) and O(14), carrying negative atomic charges, and various other atoms, most of which probably have small positive atomic charges. Thus the crystal structure is probably held together largely by conventional van der Waals forces between molecules oriented in an electrostatically favourable way.

As seen from Table 10, the isoalloxazine ring system is not strictly planar. The r.m.s. deviations of the atoms from the least-squares plane (labelled I in Table 10), through the atoms forming the ring system are as high as 0.19 Å. The largest deviations from the-least squares plane occur for atoms C(4), C(4a) and N(5) (-0.23,

Table 7. Intramolecular bond distances in Å with estimated standard deviations in parentheses

N(1) - C(2)	1.374(3)
C(2) = N(3)	1.410(2)
N(3) - C(4)	1.366(2)
C(4) = C(4a)	1.526(2)
C(4) = C(4a) C(4a) = N(5)	1.465(2)
V(4a) - N(5)	1.405(2)
$N(3) \rightarrow C(3a)$	1.421 (2)
C(5a) - C(6)	1.389 (3)
C(6) - C(7)	1.388 (3)
C(7) - C(8)	1.411 (3)
C(8) - C(9)	1.387 (3)
C(9)C(9a)	1.387 (3)
C(9a) - N(10)	1.424 (2)
N(10) - C(10a)	1.347 (2)
C(10a) - N(1)	1.304 (2)
C(4a) - C(10a)	1.515 (3)
C(5a) - C(9a)	1.400(2)
C(2) - O(12)	1.216(2)
N(3) - C(13)	1.467 (3)
C(4) - O(14)	1.215 (2)
C(4a) - C(14a)	1.571 (3)
N(5) - C(15)	1.469 (3)
C(7) - C(17)	1.511 (3)
C(8) - C(18)	1.507 (3)
N(10) - C(20)	1.467(3)
$C(14_{2}) - C(24_{2})$	1.407(3)
C(24a) - C(24a)	1.305 (3)
C(2+a) = C(3+a)	1 505 (5)
C(6) - H(6)	0.94(2)
C(9) - H(9)	1.01 (2)
C(13) - H(13a)	0.81 (6)
C(13) - H(13b)	0.76 (7)
C(13) - H(13c)	1.16 (6)
C(14a) - H(14a)	0.99 (2)
C(14a) - H(14b)	1.00 (3)
C(15) - H(15a)	1.03(4)
C(15) - H(15b)	0.92(3)
C(15) - H(15c)	1.05 (3)
C(17) - H(17a)	0.90 (3)
C(17) - H(17h)	1.01(4)
C(17) - H(17c)	0.97(4)
C(18) - H(18a)	1.02(4)
C(18) - H(18b)	0.89(4)
C(18) - H(18c)	0.94(4)
$C(20) - H(20_2)$	0.97(3)
C(20) = H(20b)	1.00(5)
C(20) = H(200)	0.98(3)
$C(24_2) = H(24)$	0.01(4)
C(24a) - H(24a)	0.91(4)
$C(34a) - \Pi(34a)$	1.00 (4)
U(34a) - H(34b)	1.00 (4)

-0.46 and 0.25 Å respectively). This distortion of the planarity of the ring system is obviously due to the large $C(sp^3)$ character of the C(4a) atom. Thus, the average of the six bond angles (cf. Table 8) at C(4a) is

Table 8. Intramolecular bond angles (°)

Only bond angles involving non-hydrogen atoms are given. The estimated standard deviations are given in parentheses.

C(10a) - N(1) - C(2)	119.6 (2)
N(1) - C(2) - N(3)	120.2(2)
N(1) - C(2) - O(12)	121.3(2)
N(3) - C(2) - O(12)	118.4 (2)
C(2) - N(3) - C(4)	124.0 (2)
C(2) - N(3) - C(13)	117.7 (2)
C(4) - N(3) - C(13)	118.2 (2)
N(3) - C(4) - C(4a)	117.1 (2)
N(3) - C(4) - O(14)	122.2 (2)
C(4a) - C(4) - O(14)	120.6 (2)
C(4) - C(4a) - N(5)	109.4 (1)
C(4) - C(4a) - C(10a)	111.5 (2)
C(4) - C(4a) - C(14a)	107.2 (2)
N(5) - C(4a) - C(10a)	111.6 (2)
N(5) - C(4a) - C(14a)	111.2 (1)
C(10a) - C(4a) - C(14a)	105.8 (1)
C(4a) - N(5) - C(5a)	111.1 (1)
C(4a) - N(5) - C(15)	115.7 (1)
C(5a) - N(5) - C(15)	112.6 (2)
N(5) - C(5a) - C(6)	121.0 (2)
N(5) - C(5a) - C(9a)	120.6 (2)
C(6) - C(5a) - C(9a)	118.5 (2)
C(5a) - C(6) - C(7)	122.4 (2)
C(6) = C(7) = C(8)	110.7 (2)
C(6) - C(7) - C(17)	120.1(2) 121.2(2)
C(0) = C(1) = C(1)	$121^{\circ}2(2)$ 118.0(2)
C(7) = C(8) = C(18)	121.5 (2)
C(7) = C(8) = C(18)	121.5(2) 110.6(2)
C(9) = C(8) = C(9)	121.0 (2)
C(9) = C(9) = C(9a)	1219(2) 122.2(2)
C(5a) - C(9a) - C(9)	119.6(2)
C(5a) - C(9a) - N(10)	118.2(2)
C(9a) - N(10) - C(10a)	121.3(2)
C(9a) - N(10) - C(20)	118.8 (2)
C(10a) - N(10) - C(20)	119.8 (2)
N(10) - C(10a) - N(1)	119.5 (2
C(4a) - C(10a) - N(10)	115.2 (2
N(1) - C(10a) - C(4a)	125.2 (2
C(4a) - C(14a) - C(24a)	114.8 (2
C(14a) - C(24a) - C(34a)	124.2 (2)

Table 9. Intermolecular distances less than 3.6 Å between non-hydrogen atoms

Estimated standard deviations are given in parentheses.

Code for symmetry-related atoms

Superscript	Atom at			
None	x, y, z			
i	$\frac{3}{2} - x$, $1 - y$, $\frac{1}{2} + z$			
ii	$1-x, -\frac{1}{2}+y, \frac{3}{2}-z$			
iii	$\frac{1}{2} + x$, $\frac{1}{2} - y$, $1 - z$			
$N(1)\cdots C(13^i)$	3·561 (3) Å			
$O(12) \cdots C(2^i)$	3.519 (3)			
$O(12) \cdots N(3^{i})$	3.260 (3)			
$O(12) \cdots C(4^{I})$	3.535 (3)			
$O(12) \cdots C(13^i)$	3.556 (2)			
$O(12) \cdots C(14a^i)$	3.417 (2)			
$O(14) \cdots C(9^{ii})$	3.297 (2)			
$O(14) \cdots C(17^{iii})$	3.327 (3)			

 109.4° , close to the ideal value 109.5° for tetrahedral atoms, and the four intramolecular bonds (*cf.* Table 7) involving C(4a) have single-bond lengths. Calculation of least-squares planes (labelled II, III and IV in Table 10) through the three six-membered rings of the isoalloxazine ring system reveals that the pyrimidinoid (II) and benzenoid (IV) rings are almost planar, while the pyrazinoid (III) ring deviates significantly from planarity. The relative orientation of these three planes

Table 10. Deviations of the atomsfrom least-squares planes

The planes are of the form AX+BY+CZ=D, where X, Y, and Z are in Å units relative to the axes a, b and c. The atoms indicated with asterisks were omitted from the calculations of the least-squares planes.

	Devi	ation from	n		Deviation from
		plane I			plane II
N(1)		0.166 A	N	(1)	0.014 A
C(2)		0.136		(2)	-0.074
N(3)		0.024	N	(3)	0.053
C(4)	-	0.232		(4)	0.102
C(4a)	-	0.455		(4a)	-0.102
N(5)		0.253	*0	(10a)	0.191
C(Sa)		0.130	*0	(12)	-0.181
C(6)		0.1/2	*0	(13)	0.146
C(1)		0.146	*0	(14)	- 1.585
C(0)	_	0.177	*N	(14a)	0.847
C(9)	_	0.003	*N	(10)	0.250
N(10)		0.089	1	(10)	0 250
$C(10_{2})$	_	.0.028			
*0(12)		0.267			
*C(13)		0.134			
*O(14)	_	0.322			
*C(14a)	-	-2.004			
*C(15)		1.638			
*C(17)		0.138			
*C(18)	-	-0-335			
*C(20)		0.362			
*C(24a)	-	- 2-597			
*C(34a)	-	- 3·102			
	Dev	iation from	m		Deviation from
	T C L	plane III			plane IV
$C(4\alpha)$	1	0.311 &	C	(59)	-0.014 Å
N(5)	_	0.254	Č	(54)	-0.009
C(5a)	_	-0.016	č	(7)	0.022
C(9a)	_	-0.153	č	(8)	-0.011
N(10)		0.097	č	(9)	-0.011
$C(10_{2})$		0.129	č	(9a)	0.024
*N(1)		0.465	*N	l(5)	-0.041
*C(4)		0.075	*N	(10)	0.148
*C(6)	-	-0.137	*Č	(17)	0.053
*C(9)	-	-0.476	*C	(18)	-0.046
*C(14a)	_	-1.880			
*C(15)		1.664			
*C(20)		0.370			
					Root mean square
					deviation of the
					atoms without
					asterisks from
Diana	٨	R	C	п	the planes
	0.075	0 470	0.070	2.970	0.186 Å
I I	0.075	-0.4/0	0.702	5.9/0	0.066
	-0.000	-0.000	0.967	1.084	0.187
111 TV	0.024	-0.259	0.00/	4.202	0.016
	11.17/11		v 2.J.J	7772	0 0 1 0

can be seen in Fig. 3. Thus, the molecule is slightly twisted along its elongation, due to the presence of the tetrahedral C(4a) atom. The angle between the normals to the least squares-planes of the benzenoid and pyrazinoid rings is $12 \cdot 1^{\circ}$, and that for the pyrazinoid-pyrimidinoid pair is $17 \cdot 7^{\circ}$.

To visualize the bond scheme consistent with the intramolecular bond distances obtained, approximate π -bond orders were evaluated (Table 11) from the linear π -bond order – bond distance correlation functions suggested by e.g. Ross & Skancke (1967) and Fischer-Hjalmars & Sundbom (1968): $d = A - p \times 0.180$ (where p is the bond order, d the corresponding bond distance in Å, and A is a constant which has been determined to be 1.517 Å for C-C, 1.458 Å for C-N and 1.368 Å for C-O bonds). These functions have been originally developed to evaluate bond distances from π -bond orders obtained from semi-empirical molecular orbital calculations of the Pariser-Parr-Pople type on strictly planar molecules. Since the molecules in this study are nonplanar, the bond orders given in Table 11 should be treated only as rough estimates. However, the bond order values obtained agree fairly well with the commonly accepted π -bond scheme (cf. Fig. 1) for

Fig. 3. Conformation of 4a-allyl-3,5,7,8,10-pentamethyl-4a,5dihydroisoalloxazine, as seen (a) perpendicularly to, and (b) parallel to the molecular plane, with the atoms numbered for reference in the text. The non-hydrogens are represented by their thermal ellipsoids.

Fig. 4. Packing diagram, excluding hydrogens, projected (a) on the ab plane and (b) on the ac plane.

a fully reduced 4a,5-dihydroisoalloxazine ring system in the neutral state.

From the bond orders in Table 11, the π electrons of the benzenoid ring appear completely delocalized; bond orders range from 0.59 for the C(7)–C(8) bond to 0.72. In the pyrazinoid ring the N(10)–C(10a) bond has a fairly high (0.62) bond order. In the pyrimidinoid ring the highest bond order (0.86) is obtained for the C(10a)–N(1) bond. Fairly high bond orders, 0.47 and 0.49, also occur for the N(1)–C(2) and N(3)–C(4) bonds in this ring. The two oxygens, O(12) and O(14), attached to this ring are obviously keto, since the two

Table 11. Estimated intramolecular π bond orders, obtained from linear bond order-bond distance correlation functions

Bond	Bond order	Bond	Bond order
N(1) - C(2)	0.47	C(10a) - N(1)	0.86
C(2) - N(3)	0.27	C(4a) - C(10a)	0.00
N(3) - C(4)	0.49	C(5a) - C(9a)	0.65
C(4) - C(4a)	0.00	C(2) - O(12)	0.85
C(4a) - N(5)	0.00	N(3) - C(13)	0.00
N(5) - C(5a)	0.21	C(4) - O(14)	0.85
C(5a) - C(6)	0.71	C(4a) - C(14a)	0.00
C(6) - C(7)	0.72	N(5) - C(15)	0.00
C(7) - C(8)	0.59	C(7) - C(17)	0.00
C(8) - C(9)	0.72	C(8) - C(18)	0.06
C(9) - C(9a)	0.72	N(10)-C(20)	0.00
C(9a)-N(10)	0.19	C(14a) - C(24a)	0.13
N(10)-C(10a)	0.62	C(24a)-C(34a)	1.18

bond orders for the bonds C(2)–O(12) and C(4)–O(14) are both 0.85. Thus, there seems to be some delocalization of π electrons over the region N(10)–C(10a)–N(1)– C(2)–O(12), since all the involved bond orders deviate appreciably from zero. As discussed above, the bonds involving the carbon atom C(4a) are almost pure single bonds, as is evident from Table 11.

The geometry of the allyl group attached to the carbon atom C(4a) of the isoalloxazine ring agrees reasonably with that obtained by Dragonette & Karle (1965) in the structure of allylthiourea, as regards the bond lengths 1.305 (3) and 1.493 (3) Å for the C(34a)-C(24a) and C(24a)-C(14a) bonds, and 124.2 (2) and 114.8 (2)° for the angles C(34a)-C(24a)-C(14a) and C(24a)-C(14a)-C(4a). Thus, Dragonette & Karle obtained the values 1.27 (1) and 1.53 (1) Å for the corresponding bonds, and 128 (1)° and 113 (1)° for the angles.

The bond C(14a)-C(4a) between the allyl group and the isoalloxazine ring is 1.571 (3) Å, whereas a usual C-C single bond is 1.54 Å (Sutton, 1958). Similarly, in the structure of 5-ethyl-3,7,8,10-tetramethylisoalloxazinium perchlorate (Norrestam & Tillberg, 1972), the bond between the carbon atom of an ethyl group and the nitrogen N(5) of the isoalloxazine ring is 1.529 (6) Å, compared with the usual C-N single bond length 1.48 Å (Sutton, 1958). These long bond lengths suggest that the bonds between the alkyl groups and the isoalloxazine rings are weakened in these two derivatives. It has also been shown, in investigations (cf. Hemmerich, Ghisla, Hartmann & Müller, 1971) of the chemistry of different alkyldihydroisoalloxazines, that one characteristic feature is the ease of addition and removal of the alkyl substituents. This feature is, of course, relevant to the possible role of alkyldihydroisoalloxazines as intermediates in group transfer processes involving flavin enzymes.

The author is indebted to Professor Peder Kierkegaard for his active and stimulating interest in this work, and for all facilities placed at his disposal. Thanks are also due to Dr S. Ghisla for the supply of the crystals used in this work, to Dr M. von Glehn for assistance with some of the computations and to Dr Don Koenig for valuable comments on the manuscript and for his correction of the English of this paper.

This investigation has been performed with financial support from the Tri-Centennial Fund of the Bank of Sweden and from the Swedish Natural Science Research Council.

References

BÜRGI, H. B. & DUNITZ, J. D. (1971). Acta Cryst. A 27, 117. DRAGONETTE, K. S. & KARLE, I. L. (1965). Acta Cryst. 19, 978.

- EHRENBERG, A. & HEMMERICH, P. (1968). In *Biological Oxi*dations. New York: Interscience Publishers.
- FISCHER-HJALMARS, I. & SUNDBOM, M. (1968). Acta Chem. Scand. 22, 607.

GAVRON, H. (1963). Nature, Lond. 194, 1270.

- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HAUPTMAN, H. (1964). Acta Cryst. 17, 1421.
- HEMMERICH, P., GHISLA, S., HARTMANN, U. & MÜLLER, F. (1971). In Flavins and Flavoproteins. Baltimore: University Park Press.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- JEFCOATE, C. R., GHISLA, S. & HEMMERICH, P. (1971). J. Chem. Soc. (C), p. 1689.
- KIERKEGAARD, P., NORRESTAM, R., WERNER, P.-E., CSÖ-REGH, I., VON GLEHN, M., KARLSON, R., LEIJONMARCK. M., RÖNNQUIST, O., STENSLAND, B., TILLBERG, O. & TORBJÖRNSSON, L. (1971). In Flavins and Flavoproteins. Baltimore: University Park Press.

KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849. NORRESTAM, R. (1972). Acta Cryst. A28. In the press.

- NORRESTAM, R., VON GLEHN, M., HAGMAN, L.-O. & KIER-KEGAARD, P. (1969), Acta Chem. Scand. 23, 2199.
- NORRESTAM, R. & STENSLAND, B. (1972). Acta Cryst. B28, 440.
- NORRESTAM, R. & TILLBERG, O. (1972). Acta Cryst. B28, 890.
- ROOS, B. & SKANCKE, P. N. (1967). Acta Chem. Scand. 21, 233.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- SUTTON, L. E. (1958). Tables of Interatomic Distances and Configuration of Molecules and Ions. London: The Chemical Society.
- WALKER, W. H., HEMMERICH, P. & MASSEY, V. (1967). Helv. Chim. Acta 50, 2269.

Acta Cryst. (1972). B28, 1720

Structure d'un Dérivé de la Pyrazoline-1

PAR MARIE-PAULE ROUSSEAUX, JACQUELINE MEUNIER-PIRET, JEAN-PAUL PUTZEYS, GABRIEL GERMAIN ET MAURICE VAN MEERSSCHE

Laboratoire de Chimie-Physique et de Cristallographie, Université de Louvain, Schapenstraat 39, 3000 Louvain, Belgique

(Recu le 1 décembre 1971)

trans-3-Phenyl-3-methoxycarbonyl-4-p-methoxyphenyl-1-pyrazoline crystallizes in the space group $P_{2_1/c}$ with Z = 4. The unit-cell constants are a = 14.183, b = 5.777, c = 22.681 Å and $\beta = 120.20^{\circ}$. The pyrazoline ring is not planar: the carbon atom C(4) is out (0.5 Å) of the plane of the other atoms of the heterocycle. The length of the double bond N=N is 1.240 Å.

Introduction

Les diphényl-3,4, carbométhoxy-3, pyrazoline-1 cis et trans substituées au niveau des phényles sont obtenues par addition de diazométhane sur la double liaison centrale des acides a-phényl cinnamiques substitués. Elles se décomposent à une température légèrement supérieure à leur point de fusion; les produits obtenus sont, pour les dérivés trans, des cyclopropanes et. pour les dérivés cis, des oléfines. Aucune règle concernant le mécanisme de cette décomposition n'a pu être établie. Il semble cependant certain que la conformation des pyrazolines joue un rôle important sur la nature des produits obtenus. Dans cet ordre d'idée, nous avons envisagé l'étude de quelques pyrazolines typiques (tant *cis* que *trans*).

Dans ce travail nous déterminons la structure de la phényl-3, carbométhoxy-3, p-méthoxy-phényl-4, pyrazoline-1 trans ($C_{18}H_{18}N_2O_3$).

Les spectres UV et IR donnent peu de renseignements sur cette structure. Par contre, les spectres r.m.n. indiquent qu'il s'agit probablement d'une structure rigide et que le cycle pentagonal s'écarte de la planéité (Roelens, 1970).

Partie expérimentale

Les cristaux sont incolores. Ils ont la forme de prismes allongés suivant l'axe b, dont la base est un hexagone irrégulier. Leur point de fusion est de 138-139°. Les données cristallographiques sont les suivantes:

14.183 Å a =b =5,777 c = 22,681 $\beta = 120,20^{\circ}$ $V = 1606, 1 \text{ Å}^3$ Groupe spatial $P2_1/c$ $Z = 4(C_{18}H_{18}N_2O_3)$ Densité calculée: 1,283 g.cm⁻³ F(000) = 656.

Les paramètres de la maille, après avoir été évalués sur des films de Weissenberg, ont été déterminés avec plus de précision en mesurant, au moyen d'un diffractomètre, l'angle 2θ de quelques réflexions.

1720